
C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Creating Hybrid Codes with Cray Reveal

Heidi Poxon
Technical Lead

Programming Environment
Cray Inc.

March 2016

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Legal Disclaimer

© Cray Inc. Proprietary

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property rights
is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release. Customers and other
third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal
codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray Inc.
products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, URIKA,
and YARCDATA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT,
ECOPHLEX, LIBSCI, NODEKARE, THREADSTORM. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI, the
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used in this document are the property of their
respective owners.

Copyright 2016 Cray Inc.

March 2016 2

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

When to Move to a Hybrid Programming Model

March 2016 © Cray Inc. Proprietary 3

● When code is network bound
●  Increased MPI collective and point-to-point wait times

● When MPI starts leveling off
●  Too much memory used, even if on-node shared communication

is available

●  As the number of MPI ranks increases, more off-node
communication can result, creating a network injection issue

● When contention of shared resources increases

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Approach to Adding Parallelism

March 2016 © Cray Inc. Proprietary 4

1.  Identify key high-level loops
●  Determine where to add additional levels of parallelism

2.  Perform parallel analysis and scoping

●  Split loop work among threads

3.  Add OpenMP layer of parallelism
●  Insert OpenMP directives

4.  Analyze performance for further optimization,
specifically vectorization of innermost loops
●  We want a performance-portable application at the end

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

WARNING!!!

●  Nothing comes for free, nothing is automatic
●  Hybridization of an application is difficult
●  Efficient code requires interaction with the compiler to generate

●  High level OpenMP structures
●  Low level vectorization of major computational areas

●  Performance is also dependent upon the location of the data
●  CPU: NUMA, first-touch
●  Accelerator: resident or data-sloshing

●  Software such as Cray's Hybrid Programming Environment
provides tools to help, but cannot replace the developer's
inside knowledge

March 2016 © Cray Inc. Proprietary 5

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

subroutine sweepz
…
do j = 1, js
 do i = 1, isz
 radius = zxc(i+mypez*isz)
 theta = zyc(j+mypey*js)
 do m = 1, npez
 do k = 1, ks
 n = k + ks*(m-1) + 6
 r(n) = recv3(1,j,k,i,m)
 p(n) = recv3(2,j,k,i,m)
 u(n) = recv3(5,j,k,i,m)
 v(n) = recv3(3,j,k,i,m)
 w(n) = recv3(4,j,k,i,m)
 f(n) = recv3(6,j,k,i,m)
 enddo
 enddo
 …
 call ppmlr
 do k = 1, kmax
 n = k + 6
 xa (n) = zza(k)
 dx (n) = zdz(k)
 xa0(n) = zza(k)
 dx0(n) = zdz(k)
 e (n) = p(n)/(r(n)*gamm)+0.5 &
 *(u(n)**2+v(n)**2+w(n)**2)
 enddo
 call ppmlr
…
 enddo
enddo

subroutine sweepz
…
do j = 1, js
 do i = 1, isz
 radius = zxc(i+mypez*isz)
 theta = zyc(j+mypey*js)
 do m = 1, npez
 do k = 1, ks
 n = k + ks*(m-1) + 6
 r(n) = recv3(1,j,k,i,m)
 p(n) = recv3(2,j,k,i,m)
 u(n) = recv3(5,j,k,i,m)
 v(n) = recv3(3,j,k,i,m)
 w(n) = recv3(4,j,k,i,m)
 f(n) = recv3(6,j,k,i,m)
 enddo
 enddo
 …
 call ppmlr
 do k = 1, kmax
 n = k + 6
 xa (n) = zza(k)
 dx (n) = zdz(k)
 xa0(n) = zza(k)
 dx0(n) = zdz(k)
 e (n) = p(n)/(r(n)*gamm)+0.5 &
 *(u(n)**2+v(n)**2+w(n)**2)
 enddo
 call ppmlr
…
 enddo
enddo

The Problem – How Do I Parallelize This Loop?

March 2016 © Cray Inc. Proprietary

●  How do I know this is a good loop to parallelize?
●  What prevents me from parallelizing this loop?
●  Can I get help building a directive?

subroutine ppmlr

call boundary
call flatten
call paraset(nmin-4, nmax+5, para, dx, xa)

call parabola(nmin-4,nmax+4,para,p,dp,p6,pl,flat)
call parabola(nmin-4,nmax+4, para,r,dr,r6,rl,flat)
call parabola(nmin-4,nmax+4,para,u,du,u6,ul,flat)

call states(pl,ul,rl,p6,u6,r6,dp,du,dr,plft,ulft,&
 rlft,prgh,urgh,rrgh)
call riemann(nmin-3,nmax+4,gam,prgh,urgh,rrgh,&
 plft,ulft,rlft pmid umid)
call evolve(umid, pmid) ! contains more calls

call remap ! contains more calls

call volume(nmin,nmax,ngeom,radius,xa,dx,dvol)

call remap ! contains more calls

return
end

6

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Simplifying the Task with Reveal

March 2016 © Cray Inc. Proprietary

●  Navigate to relevant loops
to parallelize

●  Identify parallelization and
scoping issues

●  Get feedback on issues
down the call chain
(shared reductions, etc.)

●  Optionally insert parallel
directives into source

●  Validate scoping
correctness on existing
directives

7

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Hybridization Step 1: Loop Work Estimates

Gather loop statistics using CCE and the Cray
performance tools to determine which loops have the
most work

● Helps identify high-level serial loops to parallelize

●  Based on runtime analysis, approximates how much work exists
within a loop

● Provides the following statistics
●  Min, max and average trip counts
●  Inclusive time spent in loops
●  Number of times a loop was executed

March 2016 © Cray Inc. Proprietary 8

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

perftools-lite-loops

March 2016 © Cray Inc. Proprietary

●  CrayPat-lite loop work estimates

●  Must be used with Cray compiler

●  Load before building and running program to get loop work
estimates sent to stdout and to .ap2 file for use with Reveal

●  Automates loop work experiment by:
●  modifying the compile and link steps to include CCE’s –h profile_generate

option
●  instrumenting the program for tracing (pat_build –w)

●  –h profile_generate reduces compiler optimization levels
●  After experiment is complete, unload perftools-lite-loops to prevent further

program instrumentation.

9

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Collecting Loop Work Estimates

March 2016 © Cray Inc. Proprietary 10

●  Load PrgEnv-cray module (must use CCE)
●  Load perftools-base module if not already loaded
●  Load perftools-lite-loops module

● Build and run application

●  Loop work estimates will be available for Reveal in file
with .ap2 extension and in text format in file with .rpt
extension

● Unload perftools-lite-loops module

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Example Loop Work Estimates

March 2016 © Cray Inc. Proprietary

Table 2: Loop Stats by Function (from -hprofile_generate)

 Loop | Loop | Loop | Loop | Loop |Function=/.LOOP[.]
 Incl | Hit | Trips | Trips | Trips | PE=HIDE
 Time | | Avg | Min | Max |
 Total | | | | |
|--
| 8.995914 | 100 | 25 | 0 | 25 |sweepy_.LOOP.1.li.33
| 8.995604 | 2500 | 25 | 0 | 25 |sweepy_.LOOP.2.li.34
| 8.894750 | 50 | 25 | 0 | 25 |sweepz_.LOOP.05.li.49
| 8.894637 | 1250 | 25 | 0 | 25 |sweepz_.LOOP.06.li.50
| 4.420629 | 50 | 25 | 0 | 25 |sweepx2_.LOOP.1.li.29
| 4.420536 | 1250 | 25 | 0 | 25 |sweepx2_.LOOP.2.li.30
| 4.387534 | 50 | 25 | 0 | 25 |sweepx1_.LOOP.1.li.29
| 4.387457 | 1250 | 25 | 0 | 25 |sweepx1_.LOOP.2.li.30
| 2.523214 | 187500 | 107 | 0 | 107 |riemann_.LOOP.2.li.63
| 1.541299 | 20062500 | 12 | 0 | 12 |riemann_.LOOP.3.li.64
| 0.863656 | 1687500 | 104 | 0 | 108 |parabola_.LOOP.6.li.67

11

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

The CCE Program Library (PL)
●  An application wide repository for compiler and tools information

●  Allows the user to specify a repository of compiler information for an
application build

●  Provides the framework for application analysis
●  Whole application IPA information for optimization
●  Automatic whole application inlining and cloning
●  Various inter-procedural optimizations
●  Whole application static error detection

●  Provides ability for tools to annotate loops with runtime feedback
and other performance hints without source change
●  Support for the Cray refactoring tool, Reveal.

March 2016 © Cray Inc. Proprietary 12

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Generate a Program Library

March 2016 © Cray Inc. Proprietary 13

●  > cc –h pl=himeno.pl –hwp* himeno.c

●  > ftn –h pl=vhone.pl file1.f90

* Optionally add whole program analysis for additional
inlining.

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Launch Reveal

March 2016 © Cray Inc. Proprietary

● Use with compiler information only (no need to run
program):

> reveal vhone.pl

● Use with compiler + loop work estimates (include
performance data):

> reveal vhone.pl vhone_loops.ap2

14

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Visualize Compiler and Performance Information
Performance

feedback
Loopmark and

optimization annotations

Compiler feedback

March 2016 © Cray Inc. Proprietary 15

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Access Cray Compiler Message Information

Integrated
message

‘explain support’

Access integrated
message ‘explain’

support by right clicking
on message

March 2016 © Cray Inc. Proprietary 16

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Navigate Loops through Call Chain

Loop
instances

Loop
traceback

March 2016 © Cray Inc. Proprietary 17

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Navigate Code via Compiler Messages

Default filter: Loops that
didn’t vectorize. Can

select other filters.

Choose “Compiler Messages”
view to access message filtering

March 2016 © Cray Inc. Proprietary 18

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

View Pseudo Code for Inlined Functions

Search code
with Ctrl-F

Inlined call
sites marked

Expand to
see pseudo

code

March 2016 © Cray Inc. Proprietary 19

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Hybridization Step 2: Scope Selected Loop(s)

March 2016 © Cray Inc. Proprietary 20

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Review Scoping Results

March 2016 © Cray Inc. Proprietary 21

Loops with scoping
information are

flagged. Red needs
user assistance

Parallelization inhibitor
messages are provided to
assist user with analysis

User addresses
issues for

variables with
FAIL status

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Review Scoping Results (2)
Variable from inlining
– hover over ‘I’ to see
what symbol means

See where variable
came from

(@function_name)

March 2016 © Cray Inc. Proprietary 22

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Review Scoping Results (3)

Reveal identifies
shared reductions

down the call chain

Reveal identifies
calls that prevent

parallelization

March 2016 © Cray Inc. Proprietary 23

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Hybridization Step 3: Generate OpenMP Directives

March 2016 © Cray Inc. Proprietary

! Directive inserted by Cray Reveal. May be incomplete.
!$OMP parallel do default(none) &
!$OMP& unresolved (dvol,dx,dx0,e,f,flat,p,para,q,r,radius,svel,u,v,w, &
!$OMP& xa,xa0) &
!$OMP& private (i,j,k,m,n,$$_n,delp2,delp1,shock,temp2,old_flat, &
!$OMP& onemfl,hdt,sinxf0,gamfac1,gamfac2,dtheta,deltx,fractn, &
!$OMP& ekin) &
!$OMP& shared (gamm,isy,js,ks,mypey,ndim,ngeomy,nlefty,npey,nrighty, &
!$OMP& recv1,send2,zdy,zxc,zya)
do k = 1, ks
 do i = 1, isy
 radius = zxc(i+mypey*isy)

 ! Put state variables into 1D arrays, padding with 6 ghost zones
 do m = 1, npey
 do j = 1, js
 n = j + js*(m-1) + 6
 r(n) = recv1(1,k,j,i,m)
 p(n) = recv1(2,k,j,i,m)
 u(n) = recv1(4,k,j,i,m)
 v(n) = recv1(5,k,j,i,m)
 w(n) = recv1(3,k,j,i,m)
 f(n) = recv1(6,k,j,i,m)
 enddo
 enddo

 do j = 1, jmax
 n = j + 6

Reveal generates
OpenMP directive with
illegal clause marking
variables that need

addressing

24

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Or Validate User Inserted Directives

User inserted
directive with mis-
scoped variable ‘n’

March 2016 © Cray Inc. Proprietary 25

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Hybridization Step 4: Performance Analysis
Choose “Compiler Messages”

view to access message filtering

See loops that didn’t
vectorize. Can select

other filters.

See all compiler
messages for a loop

nest

March 2016 © Cray Inc. Proprietary 26

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Focus on Relevant Loops (June’16)

March 2016 © Cray Inc. Proprietary 27

Compiler
messages
sorted by

time

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Hybridization Step 4: Performance Analysis

March 2016 © Cray Inc. Proprietary 28

	
	
	
	
================		Observations	and	suggestions		========================	
D1	cache	utilization:	
				61.7%	of	total	execution	time	was	spent	in	1	functions	with	D1	cache	
				hit	ratios	below	the	desirable	minimum	of	90.0%.	Cache	utilization	
				might	be	improved	by	modifying	the	alignment	or	stride	of	references	
				to	data	arrays	in	these	functions.	
	
								D1				Time%			Function	
					cache	
							hit	
					ratio	
	
							74.3%				61.7%		calc3_	
	
D1	+	D2	cache	utilization:	
				61.7%	of	total	execution	time	was	spent	in	1	functions	with	combined	
				D1	and	D2	cache	hit	ratios	below	the	desirable	minimum	of	97.0%.	
				Cache	utilization	might	be	improved	by	modifying	the	alignment	or	
				stride	of	references	to	data	arrays	in	these	functions.	
	
					D1+D2				Time%			Function	
					cache	
							hit	
					ratio	
	
							96.6%				61.7%		calc3_	
…	

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Summary

March 2016 © Cray Inc. Proprietary 29

●  Reveal can be used to simplify the task of adding OpenMP to MPI
programs.

●  The result is performance portable code: OpenMP directives
(programs can be built with any compiler that supports OpenMP)

●  Can be used as a stepping stone for codes targeted for nodes with
higher core counts and as the first step in adding directives to
applications to target GPUs

●  Moving to OpenMP 4.0 accelerator directives or OpenACC via
OpenMP is a good idea
●  Same work required
●  Can have both (conditionally compile one or other or none)
●  First level of debugging on multicore CPU

